Ultrafast Dynamics of Lattice Plasmon Lasers
نویسندگان
چکیده
منابع مشابه
Ultrafast and Nonlinear Plasmon Dynamics
The interaction of light with a metal mediated by surface plasmon polaritons provides for sub-diffraction limited optical confinement and control. While the relationship of the linear plasmon response to the underlying elementary electronic excitations of the metal is well understood in general, the corresponding ultrafast and nonlinear plasmon interactions could provide further enhanced functi...
متن کاملLattice-Plasmon Quantum Features
in this work, some of the lattice plasmon quantum features are examined. Initially, the interaction of the far-field photonic mode and the nanoparticle plasmon mode is investigated. We probe the optical properties of the array plasmon that are dramatically affected by the array geometry. It is notable to mention that the original goal of this work is to examine the quantum feature of the array ...
متن کاملUltrafast dynamics of InAsÕGaAs quantum-dot microdisk lasers
The dynamical response of InAs/GaAs quantum-dot microdisk lasers has been experimentally investigated using femtosecond optical pumping. Because surface recombination and carrier diffusion are suppressed in the quantum dots, the response speed of a quantum-dot microdisk laser is much faster than that of a quantum-well microdisk laser. A turn-on time as short as 7.8 ps has been achieved in a qua...
متن کاملUltrafast transient optical loss dynamics in exciton-plasmon nano-assemblies.
We study the exciton-plasmon dynamics that lead to optical loss mitigation via ultrafast transient absorption spectroscopy (UTAS) on hybrid aggregates of core-shell quantum dots (QDs) and Au nanoparticles (NPs). We highlight that generating hot electrons in plasmonic NPs contributes to the transient differential absorption spectrum under optical excitation. The results suggest modifying the met...
متن کاملUltrafast Mid-Infrared Dynamics in Quantum Cascade Lasers
This report summarizes the entire research period. In this program, we performed experiments using a femtosecond mid-infrared pump-probe system implemented for QCL samples operating at 4.6 and 5.3 μm. We employed femtosecond time-resolved pump-probe measurements to probe the nature of the transport through the laser structure via the dynamics of the gain. The gain recovery was determined by the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Physical Chemistry Letters
سال: 2019
ISSN: 1948-7185,1948-7185
DOI: 10.1021/acs.jpclett.9b01076